

VL/OPCB/002/2025 - 254 September 22, 2025

0/0

The Member Secretary, State Pollution Control Board, Odisha, Parivesh Bhawan, A/118, Nilakantha Nagar, Unit-VIII, Bhubaneswar – 751012

Sub: Submission of Environment Statement for 2024-25 of Smelter & CPP of Vedanta Limited, Jharsuguda

Ref: Rule 14 of the Environment (Protection) Rules, 1986

Dear Sir,

This has reference to the captioned subject and the cited reference. Please find enclosed the Environment Statement of Smelter & CPP of Vedanta Limited, Jharsuguda for 2024-25 duly filled in Form-V.

Thanking You,

Yours Faithfully,

Dr. Amit Kumar Tyagi Head - Environment

Enclosed: Environment Statement in Form-V

CC: The Regional Officer, State Pollution Control Board, Odisha, Jharsuguda

VEDANTA LIMITED ,JHARSUGUDA

Vill- Bhurkamunda, P.O- Kalimandir, Dist- Jharsuguda (Odisha)- 768202 T+91-664 566 6000 F+91-664 566 6267 www.vedantalimited.com

REGISTERED OFFICE: Vedanta Limited 1st Floor, 'C' wing, Unit 103, Corporate Avenue, Atul Projects, Chakala,

Andheri (East), Mumbai 400093, Maharashtra, India.

CIN: L13209MH1965PLC291394

VL/OPCB/002/2025 - 254 September 22, 2025

The Member Secretary, State Pollution Control Board, Odisha, Parivesh Bhawan, A/118, Nilakantha Nagar, Unit-VIII, Bhubaneswar - 751012

Sub: Submission of Environment Statement for 2024-25 of Smelter & CPP of Vedanta Limited, Jharsuguda

Ref: Rule 14 of the Environment (Protection) Rules, 1986

Dear Sir,

This has reference to the captioned subject and the cited reference. Please find enclosed the Environment Statement of Smelter & CPP of Vedanta Limited, Jharsuguda for 2024-25 duly filled in Form-V.

Thanking You,

Yours Faithfully,

Dr. Amit Kumar Tyagi Head - Environment

Enclosed: Environment Statement in Form-V

CC: The Regional Officer, State Pollution Control Board, Odisha, Jharsuguda

VEDANTA LIMITED ,JHARSUGUDA

Vill- Bhurkamunda, P.O- Kalimandir, Dist- Jharsuguda (Odisha)- 768202 T+91-664 566 6000 F+91-664 566 6267 www.vedantalimited.com

REGISTERED OFFICE: Vedanta Limited 1st Floor, 'C' wing, Unit 103, Corporate Avenue, Atul Projects, Chakala,

Andheri (East), Mumbai 400093, Maharashtra, India.

CIN: L13209MH1965PLC291394

ENVIRONMENTAL STATEMENTS

FORM-V (See Rule 14)

The Ministry of Environment & Forest vide its notification dated March 1992 directed all industries which need to have consent under Water (Prevention & Control of Pollution) 1974 and Air (Prevention & Control of Pollution) 1981 to file the Environmental statement every year. This is to be filed for the period ending March by September every year. The format for the same is as follows:

Environmental Statement for the financial year ending the 31st March 2025.

PART-A

(i)	Name and address of the owner /	:	Mr. Arun Misra, Executive Director,
	occupier of the industry operation or		Vedanta Limited, Smelter & CPP,
	process		Burkhamunda, Jharsuguda - 768202
(ii)	Industry category Primary – (STC code)	:	Red A
	Secondary – (SIC Code)		Aluminium Smelter
(iii)	Production capacity – Units	:	18.5 LTPA Aluminium Smelter Plant
			1215 MW (9 X 135MW) Captive
	12		Power Plant
(iv)	Year of establishment	:	2008
(v)	Date of the last environmental statement submitted	:	25th September 2024

PART-B Water and Raw Material Consumption

(i) Water consumption m³/d

Process: 1137.096

Cooling: 57584.904

Domestic: 1051.754

A

Name of Product	Process water consumption per unit of product output		
	During the previous financial year	During the current financial year	
Aluminium Smelter	$0.063 \text{ m}^3/\text{MT} *$	$0.049 \text{ m}^3/\text{MT} *$	
Plant (Aluminium			
Ingots/Slabs/Billets/Wire			
Rods/Hot Metal)			
Power Plant (9 X 135	2.021 m ³ /MWh	2.121 m ³ /MWh	
MW)			

^{*} In Aluminium Smelter, water is being used only for cooling purpose.

(ii) Raw material consumption

Name of Name of products		Consumption of raw		
raw		material per u	nit of output	
material	are an area and a second a second and a second a second and a second a second and a	e ====================================		
2		During the previous	During the current	
		financial year	financial year	
Alumina	Aluminium Smelter Plant	1.934 MT/MT Al.	1.939 MT/MT Al.	
Calcined	(Aluminium	0.350 MT/MT A1.	0.368 MT/MT Al.	
Petroleum	Ingots/Slabs/Billets/Wire			
Coke	Rods/Hot Metal)			
Coal Tar		0.077 MT/MT A1.	0.081 MT/MT Al.	
Pitch			#	
Aluminium	* O O O O O O O O O O O O O O O O O O O	0.015 MT/MT Al.	0.017 MT/MT Al.	
Fluoride			12	
Cryolite#		0.000 KL/MT A1.	0.000 KL/MT Al.	
Cool	Power Plant (9 X 135 MW)	0.824 MT/MW (at GCV	0.781 MT/MW (at	
Coal		2961 Kcal/Kg)	GCV 3125 Kcal/Kg)	
LDO		0.000123 KL/MW	0.000102 KL/MW	

[#] Includes cryolite for starting of up pots

Polluting Industry may use codes if disclosing details of raw material would violate contractual obligations, otherwise all industries have to name the raw material used.

PART-C

Discharged to environment / unit of output specified if the consent issued.

Pollutants	Quantity of	Concentration of	Percentage of	
•	pollutants	pollutions in	variation from	

			discharged (mass/day)	discharges (mass / volume)	prescribed standards with
(a)	Water		Nil (ZLD)	Nil (ZLD)	Nil (ZLD)
(b)	Air				
	UOM		kg/day	mg/Nm³	
	Pot room FTP-1	PM	267.999	5.008	
	(1*S	Total Fluoride	34.183	0.639	
***	Pot room FTP-2	PM	275.692	5.167	
		Total Fluoride	30.101	0.564	
	Pot room FTP-3	PM	284.414	5.283	
		Total Fluoride	32.664	0.608	
	Pot room FTP-4	PM	285.816	5.158	Within the
		Total Fluoride	33.190	0.600	prescribed limits
	Pot room FTP-5	PM	135.696	2.817	
		Total Fluoride	32.184	0.667	
	Pot room FTP-6	PM	149.672	3.125	
		Total Fluoride	28.108	0.586	
	Pot room FTP-7	PM	139.945	2.900	
		Total Fluoride	31.654	0.659	
	Pot room FTP-8	PM	131.715	2.750	
		Total Fluoride	31.437	0.660	

Pot room FTP-9	PM	148.928	3.150	
	Total Fluoride	33.141	0.697	
Pot room FTP-	PM	139.572	2.867	
10	Total Fluoride	29.776	0.612	
Pot room FTP-	PM	149.828	3.092	
11	Total Fluoride	33.254	0.687	
Pot room FTP-	PM	136.904	2.917	
12	Total Fluoride	29.546	0.631	
Bake oven FTP-	PM	37.980	5.308	
1	Total Fluoride	19.193	2.679	
Bake oven FTP-	PM	38.345	5.183	
2	Total Fluoride	20.244	2.741	
Bake oven FTP-	PM	25.383	5.325	
3	Total Fluoride	14.554	3.028	
Bake oven FTP-	PM	25.400	5.150	
4	Total Fluoride	14.723	2.985	
Bake oven FTP-	PM	25.090	5.233	
5	Total Fluoride	14.981	3.119	
CPP Unit - 1	PM	747.474	46.056	
	SO ₂	22150.145	1364.500	

		NOx	5588.144	344.250	
	CPP Unit - 2	PM	724.453	45.249	
		SO ₂	21990.941	1374.083	
		NOx	5592.965	349.500	
	CPP Unit - 3	PM	730.366	46.286	
		SO ₂	20775.330	1372.417	
		NO _x	5614.153	355.500	
	CPP Unit - 4	PM	717.699	44.536	
		SO ₂	21568.661	1316.083	
		NO _x	5600.232	347.583	
	CPP Unit - 5	PM	720.735	44.321	
		SO ₂	21730.384	1338.500	
	.	NO _x	5468.806	336.000	
	CPP Unit - 6	PM	732.369	44.759	
		SO ₂	21882.237	1336.583	
		NO _x	5628.155	343.583	
	CPP Unit - 7	PM	724.966	44.537	
•		SO ₂	21428.288	1317.167	
		NO _x	5578.260	342.500	
	CPP Unit - 8	PM	718.572	44.321	
		SO ₂	22036.530	1358.583	
		NO _x	5544.375	342.250	
	CPP Unit - 9	PM	739.370	45.758	
		SO ₂	21344.052	1319.583	
		NO _x	5526.767	342.500	1

HAZARDOUS WASTAGES

(As specified under Hazardous Wastes / Management and handling Rules, 1989)

Hazardous Waste		Total Quar	ntity (Kg)
		During the previous financial year	During the current financial year
(a)	From process		
1	Used/Spent Oil	75654	33730
2	Wastes Residue containing oil	33355	28916
3	Cathode Residues including pot lining wastes	16254000	17117520
4	Silicon Carbide Refractory Bricks from Pot Lining Waste (Cathode Residue Refractory)	541800	371280
5	Spent Pot Lining (Mixed Fines)- (Cathode Residues including pot lining wastes)	10294200	10651200
6	Tar containing Wastes	8555	53140
7	Flue Gas dust & other particulates	Nil	0
8	Aluminium Dross (drosses and waste from treatment of salt sludge)	28939862	27332265
9	House Keeping waste	4126651	3911769
10	Rejected AlF3 Bags	29885	16320
11	Asbestos waste (Ladle cleaning and other Units)	Nil	0
12	Coke dust	1990456	1976800
13	Spent ion exchange Resin containing toxic metal	732	846
14	Green Anode Ridge waste	Nil	0
15	Green anode cooling Decantation Tank Sludge	Nil	0
16	Shot blasting dust	6781218	6461000
17	Drain Cleaning sludge	619100	164080
18	Ladle cleaning residues	24014340	26067280

19	Used Anode Butt with Fines	187270862	189725125
20	Discarded Containers /Barrels /Liners/ Contaminated with Hazardous waste/Chemicals	Nil	
21	Insulated copper wire scrap or copper with PVC sheathing including ISRI- code material namely "Druid"	NA	27720
22	Rubber Wastes	NA	0
23	Wastes pairings & Scrap of rubber	10	*
24	Waste Pneumatic and other tyres excluding those which do not lead to resource recover, recycling, reclamation but not for direct use		
(b)	From pollution control facilit	ies	
1	ETP sludge (Chemical Sludge from waste-water stream)	21280	354000
2	Rejected filter bags (FTP)	38410	23996
3	Ash from Incinerator	19060	27980

PART-E

Solid Waste

		Total Quantity		
		During the previous	During the current	
		financial year	financial year	
(a)	From process	Nil	Nil	
(b)	From pollution control facility			
	Ash (Fly ash + Bottom ash)	33,99,934.642 MT	32,95,056.356 MT	
(c)	(1) Quantity recycled or re-utilize	ed within the unit		
******	Ash (Fly ash + Bottom ash)	Nil	Nil	

(2) Sold	Nil	Nil
(3) Disposed		
Ash (Fly ash + Bottom ash)	38,43,929.634 MT (In	36,30,291.097 MT (In
	Sustainable Avenues)	Sustainable Avenues)

PART-F

Please specify the characterization (in terms of composition and quantum) of hazardous as well as solid wastes and indicate disposal practice adopted for both the categories of wastes.

Characterization & Disposal Practice of Hazardous Wastes

Sl.	Category of	Waste	Composition	Quantum	Disposal Practice
No.	Hazardous	Description		(T/A)	
	Waste as per				
	the Schedules				- Ti
	I, II and III		#3 #1		
	of these Rules	=0			
1	Schedule – I	Used or Spent	As per HW Rules, 2016	570	Disposal through
	Stream - 5.1	Oil	(Schedule V)		Actual Users
			Polychlorinated biphenyls		authorized by
			(PCBs): < 2 ppm		SPCB, Odisha
			Lead: 100 ppm		
			Arsenic: 5 ppm		
			Cadmium + Chromium +		*
		(4	Nickel: 500 ppm		
			Polyaromatic hydrocarbons		
			(PAH): 6 %		
2	Schedule – I	Wastes or	Silica as SiO ₂ : 23.93 %	40 .	Captive
	(Stream - 5.2	Residues	Alumina as Al ₂ O ₃ : 17.35 %		Incineration
	& 33.2)	Containing	Iron as Fe ₂ O ₃ : 21.94 %		
		Oil	Calcium as CaO: 8.47 %		
			Magnesium as MgO: 3.61 %		
	*		Sodium as Na ₂ O: 4.11 %		-
			Potassium as K ₂ O: 8.05 %		
			Titanium as TiO ₂ : 1.14 %		
3	Schedule – I	Cathode	Silica as SiO ₂ : 2.28 %	20,000	Disposal of carbon
	Stream - 11.2	Residues	Alumina as Al ₂ O ₃ : 93.28 %		portion through
		including pot	Iron as Fe ₂ O ₃ : 0.32 %		actual users
		lining wastes	Calcium as CaO: 0.34 %		authorized by
			Magnesium as MgO: 0.11 %		SPCB, Odisha and
-			Sodium as Na ₂ O: 1.41 %		Refractory portion
		*	Potassium as K ₂ O: 0.04 %		and mixed fines

			Boron: 1.44 %		through actual users authorized by SPCB, Odisha including Coprocessing in Cement Kilns authorized by SPCB, Odisha / disposal in CHWTSDF.
4	Schedule – I Stream - 11.2	Silicon Carbide Refractory Bricks from Pot Lining Waste (Cathode Residue Refractory)	Carbon: 5.50 % Silica as SiO ₂ : 74.25 % Alumina as Al ₂ O ₃ : 15.75 % Iron as Fe: 0.60 % Magnesium as Mg: 0.13 % Phosphorus as P: 0.22 % Potassium as K: 0.95 % Sodium as Na: 1.23 % Titanium as Ti: 0.38 % Fe ₂ O ₃ : 8.58 % Volatile Matter: 0.88 % Fixed Carbon 0.44 %	2000	Disposal through actual users authorized by SPCB, Odisha
5	Schedule – I Stream - 11.2	Spent Pot Lining (Mixed Fines) - (Cathode Residues including pot lining wastes)	Carbon: 60-75% SiO2: 1-2 % Fe ₂ O ₃ : 1-2% Sodium: 7-11% Fluoride: 4-7% Al ₂ O ₃ : 7 - 8% Cyanide: 100-250 ppm	25,000	Co-processing in Cement Kilns authorized by SPCB, Odisha / disposal in CHWTSDF
6	Schedule – I Stream - 11.3	Tar containing wastes		225	In-house Recycling
7	Schedule – I Stream - 11.4	Flue gas dust and other particulates	-	130	In-house Recycling
8	Schedule – I Stream - 35.3	ETP Sludge (Chemical sludge from waste-water stream)	Silica as SiO ₂ : 3.73 % Alumina as Al ₂ O ₃ : 56.42 % Iron as Fe ₂ O ₃ : 15.41 % Calcium as CaO: 1.42 % Magnesium as MgO: 0.54% Sodium as Na ₂ O: 0.54 % Potassium as K ₂ O: 1.49 %	7,000	Disposal in CHWTSDF

.

9	Schedule – I Stream - 11.5	Aluminium Dross (drosses and waste from treatment of salt sludge) House	Silica as SiO ₂ : 2.28 % Alumina as Al ₂ O ₃ : 93.28 % Iron as Fe ₂ O ₃ : 0.32 % Calcium as CaO: 0.34 % Magnesium as MgO: 0.11 % Sodium as Na ₂ O: 1.41 % Potassium as K ₂ O: 0.04 % Boron: 1.44 %	55,000	In-house Dross Processing through Stage 1 & 2 followed by further processing at M/s Runaya Refining LLP for production of Aluminium Oxide Briquette and Calcium Aluminate (Synthetic Slag) Disposal in
	Stream - A-72	Waste	Alumina as Al ₂ O ₃ : 34.72 % Iron as Fe ₂ O ₃ : 10.23 % Calcium as CaO: 4.72 % Magnesium as MgO: 0.45 % Sodium as Na ₂ O: 19.66 % Potassium as K ₂ O: 0.5 % Boron: 1.44 %		CHWTSDF
11	Schedule – II Stream - A-72	Rejected filer bags (FTP)	Silica as SiO ₂ : 1.15 % Alumina as Al ₂ O ₃ : 55.5 % Iron as Fe ₂ O ₃ : 0.72 % Calcium as CaO: 12.61 % Magnesium as MgO: 6.5 % Sodium as Na ₂ O: 14.72 % Potassium as K ₂ O: 1.33 %	250	Incineration in pots/ disposal in Captive Hazardous Waste Incinerator
12	Schedule – II Stream - A-72	Rejected AlF3 bags	Silica as SiO ₂ : 22.56 % Alumina as Al ₂ O ₃ : 11.88 % Iron as Fe ₂ O ₃ : 0.3 % Calcium as CaO: 52.25 % Magnesium as MgO: 0.31 % Sodium as Na ₂ O: 1.27 % Potassium as K ₂ O: 0.05 %	250	Incineration in pots/ disposal in Captive Hazardous Waste Incinerator
13	Schedule – II Stream - A-72	Asbestos waste (Ladle cleaning and other units)		45	Disposal in CHWTSDF
14	Schedule – II Stream - A-72	Coke Dust	8-	2,025	In-house recycling
15	Schedule – I Stream – 35.2	Spent ion exchange resin containing toxic metal	Silica as SiO ₂ : 11.22 % Alumina as Al ₂ O ₃ : 21.29 % Iron as Fe ₂ O ₃ : 4.84 % Calcium as CaO: 13.59 % Magnesium as MgO: 5.53 %	60	Co-incineration in CPP for energy recovery/ disposal in Captive

			Sodium as Na ₂ O: 17.39 % Potassium as K ₂ O: 2.07 % Zinc as ZnO: 1.88 %	,	Hazardous Waste Incinerator	
16	Schedule – II Stream A-72	Green Anode Ridge Waste	-	70	In-house recycling	
17	Schedule – II Stream A-72	Green Anode cooling decantation tank sludge		10	In-house recycling	
18	Schedule – II Stream A-72	Shot Blasting Dust	Silica as SiO ₂ : 43.15 % Alumina as Al ₂ O ₃ : 17.1 % Iron as Fe ₂ O ₃ : 5.09 %	9,000	Disposal in CHWTSDF	
			Calcium as CaO: 1.81 % Magnesium as MgO: 0.08 % Sodium as Na ₂ O: 9.92 % Potassium as K ₂ O: 0.02 % Boron as B: 0.77 %			
19	Schedule – II Stream A-72	Drain Cleaning Sludge	Silica as SiO ₂ : 20.7 % Alumina as Al ₂ O ₃ : 41.14 % Iron as Fe ₂ O ₃ : 0.83 % Calcium as CaO: 2.01 % Magnesium as MgO: 0.14 % Sodium as Na ₂ O: 29.83 % Potassium as K ₂ O: 0.13 %	2,000	Disposal in CHWTSDF	
20	Schedule – II Stream A-72	Ladle Cleaning Residues	-	27,000	Recycle in the pot	
21	Schedule – I Stream -11.6	Used Anode Butt with fines	Silica as SiO ₂ : 16.51 % Alumina as Al ₂ O ₃ : 21.25 % Iron as Fe ₂ O ₃ : 26.52 % Calcium as CaO: 5.12 % Magnesium as MgO: 0.91 % Sodium as Na ₂ O: 7.60 % Potassium as K ₂ O: 1.14 % Manganese as MnO: 0.34 % Zinc as ZnO: 1.03 %	3,50,000	In-house recycling/disposal through Actual Users authorized by SPCB	
22	Schedule – I Stream -33.1	Discarded containers / barrels / Liners contaminated with Hazardous		100	Captive reuse/disposal through original supplier/Actual users authorized by SPCB, Odisha	

.

		Wastes /			
22	01.11.7	Chemicals		10	D' 1
23	Schedule – I Stream -37.2	Ash from Incinerator	-	40	Disposal in CHWTSDF
24	Schedule - IV	Insulated	-	100	Disposal through
21	Sl. No 7	Copper Wire	75 (I	100	Actual Users
	BI. 140 /	Scrap or			authorized by
		Copper with			SPCB, Odisha
		PVC			21 02, 00.0
		sheathing			
		including			
		ISRI-code		(47)	
		material			
		namely			
		"Druid"			
25	Schedule - III	Rubber		200	Disposal through
	Stream -	Wastes	79		Actual Users
	B3040	- ·			authorized by
26	Schedule - III	Wastes			SPCB, Odisha and
	Stream -	Parings and		8	registered under
	B3080	Scrap of			EPR portal of
		Rubber			CPCB for Waste
27	Schedule - III	Waste			Tyre
	Stream -	Pneumatic			
	B3140	and			
		other Tyres,			
		excluding			
		those which	***		
		do not lead to		¥X.	
		resource			
		recover, recycling,		e ^{ra}	
		reclamation			
		but not for			
		direct use			+3
		direct use			

Characterization & Disposal Practice of Solid waste:

Sl. No.	Waste Description	Composition	Quantum (Tons/Month)	Disposal Practice
1	Ash	Silicon dioxide (Si0 ₂): 61.60 - 62.03 %	4,20,000	Utilization as per fly
		Aluminium Oxide (Al ₂ O ₃) + Iron Oxide		Ash notification. 31st
		(Fe ₂ O ₃): 32.24 - 33.66 %		December. 2021

Magnesium Oxide (MgO): 1.01 - 1.21 %	amended thereof. Rest
	to be disposed in High
	concentration slurry
	disposal to Katikela
	ash pond (Lagoon -1
	& 3). Kurebaga Ash
	Pond (Pond3) &
	Siriapali ash pond &
	other designated sites
	allowed by SPC
	Board.

PART-G

In respect of the pollution abatement measures taken up on conservation of natural resources and on the cost of production.

(A) Water Conservation Programs

- Automation in reserve water tank water circulation to avoid water overflow or spillage in Bake Oven.
- Specific Water reduction In Smelter 1 plant through following projects:
 - i. Increasing effluent recycle rate (using of storm water in ETP).
 - ii. COC improvement of Cooling Tower through Softener Revamping.
 - iii. Fireline above ground in Smelter-1.
 - iv. Process water pipeline overgrounding, in carbon area.
- One Rooftop Rainwater Harvesting Structures has been installed and harvested water is being utilized in the process.
- Major firewater line leakage in CPP has been arrested by doing. Connections are provided from new overground fire hydrant line to BOP and Main plant, CPP.
- Scaleban installed in U#5 for maximum recycling of CT blowdown water in CPP.

(B) Energy Conservation Initiatives

- Reduction in HFO consumption by doing best operational practices in Bake oven.
- Fixing of heaters in existing furnace of Cast House to reduce LDO consumption.
- Reduction in the Specific Energy Consumption of smelter.
- Usage of EV forklift in Smelter area for reduction in Diesel Consumption and GHG Emission.

- Air Pre Heater (APH) air leakage reduction and APH basket jet cleaning yielded in reduction of Unit #1,2,5 & 7 Induced Draft (ID) and Primary Air (PA) fans consumption.
- Unit #1,2,5 & 7, Fabric Filter Differential Pressure (FFDP) correction by fabric filter bags replacement yielded in energy saving.
- Mill roller and liner replacement yielding in mill power consumption reduction.
- Condenser bullet cleaning of condenser for Unit #1, 2,5 and 7 for improving cleanliness factor and reducing vacuum losses in CPP yielded in thermal saving in turn resulting in reduction of coal consumption.
- Unit 1,2,5 & 7 penthouse flexible sealing correction & U#5 & 7 boiler bottom hopper revamping to reduce the SH/RH spray flow for heat rate improvement
- U#1,2,5 & 7 Flue gas duct repair & below replacement to reduce the ID fan consumption reduction.
- Revamping of cooling tower for Unit #5 to increase unit's efficiency in CPP yielded in thermal saving in turn resulting in reduction of coal consumption.
- Scale ban installation in #Unit-5 to reduce blowdown losses in cooling tower thereby reducing specific raw water consumption.

(C) Hazardous Waste Management

• Reduction in specific shot blast dust generation by implementing operational discipline in spent anode cleaning & optimizing shot blast machine shot blasting time.

(D) Solid Waste Management:

 Achieved more than 100 % ash utilization in various sustainable avenues such as cement plants, brick manufacturing, construction of roads/flyover embankments etc.

PART-H

Additional measures/investment proposal for environment protection including abatement of pollution prevention of pollution.

(A) Additional Measures:

Air Pollution Control:

- In Smelter 1 Carbon area, Manual handling has been eliminated by provision of Pneumatic Dust Conveying System (PDCS) to ensure closed conveying of raw material. Further, additional sheets have been provided in and around the transfer point area.
- To control the fugitive emission in potline, magnetic tap doors have been installed in all the
 pots to control any leakages. Pot Hooding efficiency improvement by replacement of web
 plates with modified design and operational discipline.

- Slot cleaner hood (Box) modification to improve suction efficiency in dedusting units and eliminate dust emission in all Grouping and Ungrouping area.
- In Bake Oven, FTP 1 Filter bag, FTP-3 & 4 Duct has been replaced
- Installation of gate valve in ferrous discharge chute in bath plant to regulate the flow and thereby reducing the emissions during discharge in Rodding.
- In Rodding plant, Bag filter was replaced in bath plant to maintain bag filter efficiency.
- As per Ozone Depleting Substances phase out plan, we have replaced Refrigerant Gas from R-22 To R-410, and it will be continued.
- Installation of Vent Bag filter at GAP3 to reduce the emission.

Water Conservation:

- Increasing effluent recycle rate and COC improvement of CT by Softener revamping in Smelter 2.
- Scaleban Filter installation in CPP
- Fire Line Above Ground in Smelter-1.
- Above grounding of Process & Firefighting water pipeline in progress to reduce the line leakages of the plant.

Water pollution Control:

Regular preventive maintenance of Effluent Treatment Plants to achieve desired norms.
 Treated water is being reused in the process.

Energy Conservation Projects:

- In Bake Oven, FTP 2 bag chamber pulsing airline bend pipe replaced to eliminate draft loss for reduction of power consumption.
- Reduction of Bath Plant Specific power consumption in Smelter 1.
- VFD motor installation in furnace-6 cooling ramps to reduce energy consumption in Smelter 2 Bake Oven.
- Interconnection of HP and LP Blower line in Bake Oven FTP.

Solid Waste Management:

• Achieved more than 100 % ash utilization in various sustainable avenues such as cement plants, brick manufacturing, construction of roads/flyover embankments etc.

(B) Investment Proposals:

- Installation of additional sprinkler at CHP area to reduce fugitive emission.
- In Potline, FTP #2 & FTP #3 refurbishment initiated for efficiency improvement.
- Air Pre Heater (APH) basket replacement in #Unit 6 & 9 to reduce flue gas exit temperature.
- Mill Power Consumption Reduction by mill roller and liner replacement.
- For Units 4,9,6 & 8 APH seal replacement to reduce Induced Draft (ID) fan power consumption.

- Unit 4,9,6 & 8 Fabric filter replacement to reduce Induced draft fan power consumption and emission control.
- Unit #6, High-pressure (HP) turbine carrier refining planned to improve cylinder efficiency thus Thermal savings in turn resulting in reduction of coal consumption.
- Cooling tower fills replacement will yield the increase cooling tower efficiency, increase in vacuum & reduce the specific coal consumption.

PART-I

Any other particular for improving the quality of the environment.

- We have taken up a mass plantation drive outside plant premises in an area of approx. 50 acres with 1 lakh saplings under MoEF&CC drive-Ek Ped Maa Ke Naam.
- Implemented Integrated Management System (IMS) across Smelter & CPP Plant for better quality, pollution control and improve health of people working in the plant.
- All important Environmental Days Celebrated to build up Environmental awareness among employees and community:
- Regular Awareness Session, TBTs & various training conducted for awareness and rally campaign in Vedanta Jharsuguda complex towards Environment protection, climate change and Biodiversity conservation.

